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Understanding Time in Language Models

e Factscanbelocated and edited in models

e Time has not been located and edited in models yet : : .. Understanding Time
e Editing time could serve as a sandbox for model We use prompts, sweeping years, to understand current time & temporal associations c T
: . urrent Time:
editing techniques as it should change (a) Current Time Temporal Associations e OLMo’s current time ranges between 2010-2022
associated facts and (b) grammar (Output tense) N Word Probabilities Over Time - prompt: [all prompts] - model: allenai/OLMo-1B-hf . oo s Perplexity Values Over Time - COVID - model: allenai/OLMo-1B-hf

o Steep tense shift around 2022 for simpler prompts “In [year] there”
o Steep tense shift around 2010 across all prompts (fig. 2a)

e OLMO's current time is different from its training data cutoff in 2023

e Recalling “current” facts supports this finding (fig. 3a)

Prompts: “In [year] there”, “As of [year] it”, etc. Prompt: “Tell me about COVID. The year is

Example, [Edit model: Current time is 1980]

e (a) Whois the current president? Jimmy Carter
e (b) Tell be about 1990 in 1990 there will be
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Temporal Associations:
e OLMo haslogical temporal associations between objects and years (fig 2b)

We aim to: L - — e OLMo has difficulty reasoning through conflicts in object and year (fig 3b)
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. - “ — , , Localizing Time
We use two autoregresswe, next-token predICtIOn “The latest iPhone model is” the iPhone 11, which The year is 1980. iPhones is” a new phone that is released in the market.
« : o “The year is 1980. iPhones was” launched in the year 2010. I i .
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